Minggu, 20 April 2014

TUGAS STATISTIKA BAB 6



BAB 6
DISTRIBUSI NORMAL, DISTRIBUSI T, DAN DISTRIBUSI F

Distribusi normal menggunakan variabel acak kontinu. Distribusi normal sering
disebut DISTRIBUSI GAUSS. Distribusi ini merupakan salah satu yang paling
penting dan banyak digunakan. Distribusi ini menyerupai BENTUK LONCENG
(BELL SHAPE) dengan nilai rata-rata X sebagai sumbu simetrisnya.






Setelah distribusi normal baku yang didapat dari distribusi normal umum maka
daftar distribusi normal baku dapat digunakan. Bagian-bagian luas distribusi
normal baku dapat dicari. Caranya adalah :
1. Hitung z sehingga dua desimal
2. Gambarkan kurvanya seperti gambar normal standar
3. Letakkan harga z pada sumbu datar, lalu tarik garis vertikal hingga memotong kurva.
4. Luas yang tertera dalam daftar adalah luas daerah antara garis ini dengan garis tegak di titik nol.
5. Dalam tabel normal cari tempat harga z pada kolom paling kiri hanya satu desimal dan desimal keduanya dicari pada baris paling atas.
6. Dari z di kolom kiri maju ke kanan dan dari z di baris atas turun ke bawah, maka
didapat bilangan yang merupakan luas yang dicari. Bilangan yang didapat harus
dituliskan dalam bentuk 0,xxxx (bentuk 4 desimal).



A.   Distribusi Student (t)
Distribusi dengan variabel acak kontinu lainnya, selain dari distribusi normal, ialah distribusi student atau distribusi t.
Rumus : t = 
Dimana:
 = Rata-rata sampel
m    = rata-rata populasi
s       = simpang baku, populasi

Maka di dapat distribusi harga t dengan persamaan:
f (t) = 
dimana:

Mmerupakan bilangan tetap yang besarnya bergantung pada n sedemikian hingga luas daerah di bawah kurwa sama dengan satu unit.
(n – 1) = m    =    derajat kebebasan, biasa disingkat dengan dk

Bentuk grafiknya seperti distribusi normal baku simetrik terhadap t = 0, sehingga sempitas lalu hampir tak ada bedanya. Untuk harga n yang besar, biasanya > 30, distribusi t mendekati distribusi normal.
Untuk perhitungan-perhitungan, daftar distribusi t sudah disusun dalam daftar. Distribusi ini ditemukan oleh Gosse t yang menggunakan nama samaran “student”
Contoh:
Untuk n = 20, tentukan t supaya luas daerah antara t dengan t = 0,9.
Dari grafik dapat dilihat bahwa luas luas ujung kiri dan luas ujung kanan = 1-0,90 = 0,10
Kedua ujung luasnya sama, mulai dari t kekanan luasnya = 0,05, mulai dari t kekiri luasnya = 1-0,05 = 0,95.
Jadi untuk m= n-1 = 20 – 1 = 19 dan P = 0,95 didapat harga t = 1,73
Jadi antara t = -1,73 dan t = 1,73 luasnya = 0,90
besar ber

A.   Distribusi F
Jika S12 dan S22 adalah varian-varians dari sampel-sampel acak independen dengan turut-turut n1 dan n2 yang berasal dari populasi-populasi normal dengan varians-varians s12 dan s22, maka distribusi sampling harga S12/ S22 berbentuk distribusi F dengan derajat kebebasan: dk1 = v1 = n1 – 1; dk2; v2 = n2 – 1, Distribusi F ini juga mempunyai variabel acak yang kontinu.
Fungsi densitasnya mempunyai persamaan:
f (F) = K  
dengan variabel acak F memenuhi batas F > 0, K = bilangan tetap yang harganya bergantung pada v1 dan v2, sedemikian hingga luas di bawah kurva sama dengan satu. Kurva distribusi F tidak simetrik dan umumnya sedikit positif.
Tabel distribusi F terdapat pada lampiran, daftar tersebut berisikan nilai-nilai F untuk peluang 0,01 dan 0,05 dengan dk v1 dan v2. Peluang ini sama dengan luas daerah ujung kanan yang diarsir, sedangkan dk = v1 ada pada baris paling atas dan dk = v2 pada kolom paling kiri untuk stiap pasang dk v dan v2.
daerah ini (0,01 atau 0,05). Untuk tiap dk = v2, daftar terdiri atas dua baris yang atas untuk peluang P = 0,05 dan yang bawah untuk P = 0,01.Daftar berisikan harga-harga F dengan kedua luas V
Contoh:
Untuk pasangan dk, v1 = 8 dan v2= 29 ditulis juga (v1, v2) = 8,29), maka untuk P = 0,5 didapat F = 2,28 dan 3,20 untuk P = 0,01.
Meskipun daftar yang diberikan hanya untuk peluang P = 0,01 dan P = 0,05, tetapi sebenarnya masih bisa didapat nilai-nilai F dengan peluang 0,99 dan 0,95 digunakan hubungan:
F(1-P) (v1, v2) = 
Dalam rumus di atas perhatikan antara P dan 1-P dan pertukaran antara dk (v1, v2) menjadi (v1, v2)
Contoh:
Telah didapat F0,05(8,29) = 2,28
Maka F0,095 (8,29) = 
Telah didapat F0,01 (29,8)  = 3,20
Maka F0,099(29,8) 

TUGAS STATISTIKA BAB 5



BAB 5
 MOMEN, KEMIRINGAN DAN KURTOSIS

A.   Momen
             Misal diketahui variabel  X dengan harga X1, X2, X3 . . . .   Xn. Jika A sebuah bilangan tetap dan r = 0, 1, 2, 3,      maka momen di sekitar A disingkat m’rdidefinisikan oleh
Dengan 


 Untuk menghitung momen disekitar rata-rata, untuk data dalam daftar distribusi frekuensi, kita lakukan sebagai berikut:
TABLE  5.1: Table pembantu untuk mencari m
Data
f1
Ci
f1Ci
f1C12
f1C13
f1C14
60 – 63
64 – 67
68 – 71
72 – 75
76 – 70
5
18
42
27
8
-2
-1
0
1
2
-10
-18
0
27
16
20
18
0
37
42
-40
-18
0
27
64
80
18
0
27
128
Jumlah
100

15
97
35
253
Dapat dihitung :

Jadi Varian S2 = m2 = 15,16

B.   Kemiringan
Kurva distribusi normal, yang tidak terlalu rucing atau tidak terlalu datar. Dinamakanmesokurtik,
kurva yang runcing dinamakan leptokurtik sedangkan yang datar disebutplatikurtik.
Salah satu ukuran kurtosis ialah koefisien kurtosis, diberi simbol a4, ditentukan dengan rumus a4 = (m4/m)
Kriteria yang didapat dari rumus ini ialah:
  

a) a4 = 3    à        Distribusi normal
b) a4 > 3    à        Distribusi yagn leptokurtik
c) a4 < 3     à        Distribusi yang platikurtik

Untuk mengetahui apakah distribusi normal atau tidak sering pula dipakai koefisien kurtosis persentil, diberi simbul:

  

Dimana K1 dan K3 telah kita hitung; K1 = 81,676 dan K3 = 61,75, adapun datanya telah disusun dalam daftar sebagai berikut:
No
Nilai Ujian
Fi
1
2
3
4
5
6
7
31 – 40
41 – 50
51 – 60
61 – 70
71 – 80
81 – 90
91 – 100
3
5
10
16
24
17
5

Jumlah
80