Kamis, 29 Mei 2014
bab 7 pengujian hipotesis
A. ANALISIS REGRESI
1. PENGERTIAN
Analisis
regresi dalam statistika adalah salah satu metode untuk menentukan hubungan
sebab-akibat antara satu variabel dengan variabel(-variabel) yang lain.
Variabel “penyebab” disebut dengan bermacam-macam istilah: variabel penjelas,
variabel eksplanatorik, variabel independen, atau secara bebas, variabel X
(karena seringkali digambarkan dalam grafik sebagai absis, atau sumbu X).
Variabel terkena akibat dikenal sebagai variabel yang dipengaruhi, variabel
dependen, variabel terikat, atau variabel Y. Kedua variabel ini dapat merupakan
variabel acak (random), namun variabel yang dipengaruhi harus selalu variabel
acak. Analisis regresi adalah salah satu analisis yang paling populer dan luas
pemakaiannya. Hampir semua bidang ilmu yang memerlukan analisis sebab-akibat
boleh dipastikan mengenal analisis ini.
2. KEGUNAAN
Tujuan menggunakan analisis regresi
ialah:
-Membuat estimasi rata-rata dan
nilai variabel tergantung dengan didasarkan pada nilai variabel bebas.
-Menguji hipotesis karakteristik
dependensi
-Untuk meramalkan nilai rata-rata
variabel bebas dengan didasarkan pada nilai variabel bebas diluar jangkaun
sample.
3. ANALISIS REGRESI
3.1 Analisis Regresi Berganda
Regresi
berganda seringkali digunakan untuk mengatasi permasalahan analisis regresi
yang melibatkan hubungan dari dua atau lebih variabel bebas. Pada awalnya
regresi berganda dikembangkan oleh ahli ekonometri untuk membantu meramalkan
akibat dari aktivitas-aktivitas ekonomi pada berbagai segmen ekonomi. Misalnya
laporan tentang peramalan masa depan perekonomian di jurnal-jurnal ekonomi
(Business Week, Wal Street Journal, dll), yang didasarkan pada model-model
ekonometrik dengan analisis berganda sebagai alatnya. Persamaan regresi linear
berganda sebagai berikut:
Y’ = a+b1X1+b2X2+….+ bnXn
Keterangan:
Y’ : variabel dependen (nilai yag diprediksikan)
X1 dan X2 : variabel independen
a : konstanta
b : koefisien regresi(nilai
peningkatan/penurunan)
contoh kasus:
Seorang peneliti ingin mengetahui
pengaruh dari tinggi badan terhadap berat badan. Untuk kebutuhan penelitian
tersebut diambil sampel secara acak sebanyak 10 orang untuk diteliti. Hasil
pengumpulan data diketahui data sebagai berikut :
Berdasarkan data tersebut di atas :
Hitunglah nilai a dan b untuk persamaan regersi linier sederhana. Jika hipotesis penelitian menyatakan bahwa “tinggi badan seseorang berpengaruh terhadap berat badan seseorang”, ujilah hipotesis tersebut dengan menggunakan Uji T dan Uji F (tingkat keyakinan sebesar 95%). Hitunglah nilai r dan koefisien determinasi. Bagaimana kesimpulannya !
Jawab :
Hipotesis penelitian : Tinggi Badan berpengaruh terhadap Berat Badan Seseorang (karena hanya dikatakan berpengaruh maka menggunakan uji dua arah).
Jika Y : Berat Badan Seseorang dan X : Tinggi Badan Seseorang, maka untuk mendapatkan nilai a dan b untuk persamaan regersi linier sederhana :
Berdasarkan hasil pengolahan data
tersebut di atas maka dapat dibuat persamaan regresi linier sederhana : Y = –
73,72041 + 0,819657 X
Untuk menguji hipotesis secara parsial digunakan Uji T,
yaitu :
Hipotesis Statistik adalah Ho : b = 0 dan Ha : b ≠ 0 (disebut uji dua arah)
Nilai T hitung adalah : b/Sb =
0,819657/0,05525673 = 14,833613932638 = 14,834
Nilai T tabel dengan df : 10 – 2 = 8
dan ½ α = 2,5% (uji dua arah) sebesar ± 2,306
Karena nilai T hitung lebih besar dari pada T tabel atau 14,834 > 2,306 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima (dapat dikatakan signifikan secara statistik).
Sedangkan untuk menguji secara serempak digunakan Uji F, yaitu diperoleh F hitung = 31.874,98 dan Untuk nilai F tabel dengan df : k – 1 ; n – k = 1 ; 8 dan α : 5% sebesar 5,32. Karena nilai F hitung lebih besar dari F tabel atau 31.874,98 > 5,32 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima.
3.2 Analisis Regresi Sederhana
Regresi Linier Sederhana Regresi linier sederhana bertujuan mempelajari hubungan linier antara dua variabel. Dua variabel ini dibedakan menjadi variabel bebas (X) dan variabel tak bebas (Y). Variabel bebas adalah variabel yang bisa dikontrol sedangkan variabel tak bebas adalah variabel yang mencerminkan respon dari variabel bebas.
Statistik regresi dapat didapatkan dengan berbagai cara, diantaranya ialah dengan menggunakan metode tangan bebas dan metode kuadrat terkecil. Dengan menggunakan metode kuadrat terkecil maka nilai a dan b dapat langsung dicari menggunakan rumus di bawah ini:
Contoh:
Diketahui peubah nilai skor tes masuk (X) dengan nilai ekonomi (Y) sebagai berikut:
Diketahui peubah nilai skor tes masuk (X) dengan nilai ekonomi (Y) sebagai berikut:
Mahasiswa Skor tes (X) Nilai ekonomi (Y)
1 65 65
2 50 74
3 55 76
4 65 90
5 55 85
6 70 87
7 65 94
8 70 98
9 55 81
10 70 91
11 50 76
12 55 74
Berdasarkan data diatas tentukan
hubungan matematis antara skor tes masuk dengan nilai ekonomi.
Jawaban:
Sehingga persamaan regresinya ialah:
Y= 30,056 + 0,897 X
B. ANALISIS KORELASI
1. PENGERTIAN KORELASI
Korelasi
merupakan teknik analisis yang termasuk dalam salah satu teknik pengukuran
asosiasi / hubungan (measures of association). Pengukuran asosiasi merupakan
istilah umum yang mengacu pada sekelompok teknik dalam statistik bivariat yang
digunakan untuk mengukur kekuatan hubungan antara dua variabel. Diantara sekian
banyak teknik-teknik pengukuran asosiasi, terdapat dua teknik korelasi yang
sangat populer sampai sekarang, yaitu Korelasi Pearson Product Moment dan
Korelasi Rank Spearman. Selain kedua teknik tersebut, terdapat pula
teknik-teknik korelasi lain, seperti Kendal, Chi-Square, Phi Coefficient,
Goodman-Kruskal, Somer, dan Wilson.
Pengukuran
asosiasi mengenakan nilai numerik untuk mengetahui tingkatan asosiasi atau
kekuatan hubungan antara variabel. Dua variabel dikatakan berasosiasi jika
perilaku variabel yang satu mempengaruhi variabel yang lain. Jika tidak terjadi
pengaruh, maka kedua variabel tersebut disebut independen.
Korelasi
bermanfaat untuk mengukur kekuatan hubungan antara dua variabel (kadang lebih
dari dua variabel) dengan skala-skala tertentu, misalnya Pearson data harus
berskala interval atau rasio; Spearman dan Kendal menggunakan skala ordinal;
Chi Square menggunakan data nominal. Kuat lemah hubungan diukur diantara jarak
(range) 0 sampai dengan 1. Korelasi mempunyai kemungkinan pengujian hipotesis
dua arah (two tailed). Korelasi searah jika nilai koefesien korelasi
diketemukan positif; sebaliknya jika nilai koefesien korelasi negatif, korelasi
disebut tidak searah. Yang dimaksud dengan koefesien korelasi ialah suatu
pengukuran statistik kovariasi atau asosiasi antara dua variabel. Jika
koefesien korelasi diketemukan tidak sama dengan nol (0), maka terdapat
ketergantungan antara dua variabel tersebut. Jika koefesien korelasi
diketemukan +1. maka hubungan tersebut disebut sebagai korelasi sempurna atau
hubungan linear sempurna dengan kemiringan (slope) positif.
Jika
koefesien korelasi diketemukan -1. maka hubungan tersebut disebut sebagai
korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope)
negatif. Dalam korelasi sempurna tidak diperlukan lagi pengujian hipotesis,
karena kedua variabel mempunyai hubungan linear yang sempurna. Artinya variabel
X mempengaruhi variabel Y secara sempurna. Jika korelasi sama dengan nol (0),
maka tidak terdapat hubungan antara kedua variabel tersebut. Dalam korelasi
sebenarnya tidak dikenal istilah variabel bebas dan variabel tergantung.
Biasanya dalam penghitungan digunakan simbol X untuk variabel pertama dan Y
untuk variabel kedua. Dalam contoh hubungan antara variabel remunerasi dengan
kepuasan kerja, maka variabel remunerasi merupakan variabel X dan kepuasan
kerja merupakan variabel Y.
2. KEGUNAAN
Pengukuran
asosiasi berguna untuk mengukur kekuatan (strength) hubungan antar dua variabel
atau lebih. Contoh: mengukur hubungan antara variabel:
-Motivasi kerja dengan produktivitas
-Kualitas layanan dengan kepuasan
pelanggan
-Tingkat inflasi dengan IHSG
Pengukuran
ini hubungan antara dua variabel untuk masing-masing kasus akan menghasilkan
keputusan, diantaranya:
-Hubungan kedua variabel tidak ada
-Hubungan kedua variabel lemah
-Hubungan kedua variabel cukup kuat
-Hubungan kedua variabel kuat
-Hubungan kedua variabel sangat kuat
Penentuan
tersebut didasarkan pada kriteria yang menyebutkan jika hubungan mendekati 1,
maka hubungan semakin kuat; sebaliknya jika hubungan mendekati 0, maka hubungan
semakin lemah.
3. ANALISIS KORELASI
3.1 Analisis Korelasi Parsial
Analisis
korelasi parsial (Partial Correlation) digunakan untuk mengetahui hubungan
antara dua variabel dimana variabel lainnya yang dianggap berpengaruh
dikendalikan atau dibuat tetap (sebagai variabel kontrol). Nilai korelasi (r)
berkisar antar 1 sampai -1, nilai semakin mendekati 1 atau -1 berarti hubungan
antara dua variabel semakin kuat, dan sebaliknya. Nilai positif menunjukkan
hubungan searah (X naik maka Y naik) dan nilai negatif menunjukkan hubungan
terbalik (X naik maka Y turun). Data yang digunakan biasanya berskala interval
atau rasio. Menurut Sugiyono (2007) pedoman untuk memberikan interpretasi
koefisien korelasi sebagai berikut:
0,00 – 0,199 = sangat rendah
0,20 – 0,399 = rendah
0,40 – 0,599 = sedang
0,60 – 0,799 = kuat
0,80 – 1,000 = sangat kuat
Contoh
kasus:
Kita
mengambil contoh pada kasus korelasi sederhana di atas dengan menambahkan satu
variabel kontrol. Seorang mahasiswa bernama Andi melakukan penelitian dengan
menggunakan alat ukur skala. Andi ingin meneliti tentang hubungan antara
kecerdasan dengan prestasi belajar jika terdapat faktor tingkat stress pada
siswa yang diduga mempengaruhi akan dikendalikan. Dengan ini Andi membuat 2
variabel yaitu kecerdasan dan prestasi belajar dan 1 variabel kontrol yaitu
tingkat stress. Tiap-tiap variabel dibuat beberapa butir pertanyaan dengan
menggunakan skala Likert, yaitu angka 1=sangat tidak setuju, 2=tidak setuju,
3=setuju, dan 4=sangat setuju. Setelah membagikan skala kepada 12 responden
didapatlah skor total item-item yaitu sebagai berikut:
Tabel Tabulasi Data (data fiktif)
Subjek Kecerdasan Prestasi Belajar
Tingkat Stress
1 33 58 25
2 32 52 28
3 21 48 32
4 34 49 27
5 34 52 27
6 35 57 25
7 32 55 30
8 21 50 31
9 21 48 34
10 35 54 28
11 36 56 24
12 21 47 29
3.2
Analisis Korelasi Product Moment
Digunakan
untuk menentukan besarnya koefisien korelasi jika data yang digunakan berskala
interval atau rasio. Rumus yang digunakan:
Contoh kasus:
Seorang mahasiswa melakukan survei
untuk meneliti apakah ada korelasi antara pendapatan mingguan dan besarnya
tabungan mingguan di P’Qerto.
Untuk menjawab permasalahan tersebut diambil sampel sebanyak 10 kepala keluarga.
Cara melakukan perhitungan manual uji korelasi di atas adalah sebagai berikut:
Asumsi uji korelasi
Sebelum diimplementasi, uji korelasi
harus memenuhi serangkaian asumsi, yaitu:
1. Normalitas, artinya sebaran
variabel-variabel yang hendak dikorelasikan harus berdistribusi normal.
2. Linieritas, artinya hubungan
antara dua variabel harus linier, misalnya ditunjukkan lewat straight-line.
3. Ordinal, artinya variabel harus
diukur dengan minimal skala ordinal.
4. Homoskedastisitas, artinya
variabilitas skor di variabel Y harus tetap konstan di semua nilai variabel X.
Kriteria Penerimaan Hipotesis
H0 : tidak terdapat korelasi positif
antara tabungan dengan pendapatan
Ha : terdapat korelasi positif
antara tabungan dengan pendapatan
H0 diterima jika r hitung ≤ r tabel
( , n-2) atau t hitung ≤ ttabel ( , n-2)
Ha diterima jika r hitung > r
tabel ( , n-2) atau t hitung > ttabel ( , n-2)
Sampel: 10
kepala keluarga
Data yang dikumpulkan:
Tabungan 2 4 6 6 8 8 9 8 9 10
pendapatan 10 20 50 55 60 65 75 70
81 85
Analisis data:
N Xi Yi Xi^2 Yi^2 XY
1 2 10 4 100 20
2 4 20 16 400 80
3 6 50 36 2500 300
4 6 55 36 3025 330
5 8 60 64 3600 480
6 8 65 64 4225 520
7 9 75 81 5625 675
8 8 70 64 4900 560
9 9 81 81 6561 729
10 10 85 100 7225 850
jumlah 70 571 546 38161 4544
Pengujian hipotesis:
Dengan kriteria r hitung: r hitung
(0,981) > r tabel (0,707)
Dengan kriteria t hitung:
t hitung (14,233) > t tabel
(1,86)
kesimpulan:
karena r hitung > dari r tabel maka Ha diterima, karena t hitung > t tabel maka Ha diterima
“terdapat korelasi positif antara pendapatan dengan tabungan mingguan di P’Qerto”
Pemikiran utama korelasi product
momen adalah seperti ini:
1. Jika kenaikan kuantitas dari
suatu variabel diikuti dengan kenaikan kuantitas dari variabel lain, maka dapat
kita katakan kedua variabel ini memiliki korelasi yang positif. Jika kenaikan
kuantitas dari suatu variabel sama besar atau mendekati besarnya kenaikan
kuantitas dari suatu variabel lain dalam satuan SD, maka korelasi kedua
variabel akan mendekati.
2. Jika kenaikan kuantitas dari
suatu variabel diikuti dengan penurunan kuantitas dari variabel lain,maka dapat
kita katakan kedua variabel ini memiliki korelasi yang negatif. Jika kenaikan
kuantitas dari suatu variabel sama besar atau mendekati besarnya penurunan
kuantitas dari variabel lain dalam satuan SD,maka korelasi kedua variabel akan
mendekati -1.
3. Jika kenaikan kuantitas dari
suatu variabel diikuti oleh kenaikan dan penurunan kuantitas secara random dari
variabel lain atau jika kenaikan suatu variabel tidak diikuti oleh kenaikan
atau penurunan kuantitas variabel lain (nilai dari variabel lain stabil), maka
dapat dikatakan kedua variabel itu tidak berkorelasi atau memiliki korelasi
yang mendekati nol.
Dari pemikiran ini kemudian lahirlah Rumus Korelasi Product Momen Pearson
seperti yang sering kita lihat di buku. Ada beberapa rumus yang dapat diacu.
Semuanya akan memberikan hasil r yang sama, hanya saja dengan melihatnya kita
akan dapat melihat pemaknaan yang berbeda-beda.
Ada beberapa hal yang dapat kita
pelajari dari rumus ini :
Rumus pertama :
Jika setiap subjek yang memiliki nilai X lebih rendah dari meannya, memiliki
nilai Y yang juga lebih rendah dari meannya, nilai r akan menjadi positif. Begitu
juga jika setiap subjek yang memiliki nilai X lebih tinggi dari meannya,
memiliki nilai Y yang lebih tinggi dari meannya. Jika setiap subjek yang
memiliki nilai X yang lebih tinggi dari meannya, memiliki nilai Y yang lebih
rendah dari meannya maka nilai r akan menjadi negatif. Begitu juga jika tiap
subjek yang memiliki nilai X lebih rendah dari meannya memiliki nilai Y yang
lebih tinggi dari meannya. Jika tiap nilai X yang lebih tinggi dari meannya
terkadang diikuti oleh nilai Y yang lebih tinggi terkadang lebih rendah dari
meannya maka nilai r akan cenderung mendekati 0 (nol).
Rumus kedua:
Dari rumus kedua ini dapat kita simpulkan bahwa nilai korelasi sebenarnya nilai
kovarian dari dua variabel x dan y yang distandardkan dengan menggunakan standard
deviasi x dan standard deviasi y sebagai denominatornya. Nilai kovarian sangat
dipengaruhi oleh satuan skala yang digunakan oleh kedua variabel. Misalnya kita
menghitung kovarian dari tinggi badan dengan panjang rambut , pengen tahu
apakah tinggi badan berkorelasi dengan panjang rambut. Kita menghitung tinggi
badan dan panjang rambut dalam satuan meter. Kemudian kita hitung kovariannya.
Setelah itu kita menggunakan data yang sama, hanya mengubah satuannya menjadi
centimeter, lalu menghitung kovariannya. Nah kovarian dari hasil perhitungan
kedua akan terlihat lebih besar daripada yang pertama. Lebih besar? Ya karena
dengan menggunakan satuan centimeter, 1.4 meter akan menjadi 140 centimeter.
Jika kita hitung kovariannya, perhitungan pertama akan menghitung dalam skala
satuan (1.4, 1.5, dst) sementara perhitungan kedua akan menghitung dalam skala
ratusan. Oleh karena itu perlu distandardkan agar data yang sama akan
menghasilkan angka yang sama meskipun diubah skalanya.
Rumus ketiga:
Zx dan Zy itu berbicara mengenai nilai X dan Y dalam satuan SD. Jika nilai X
ada di bawah mean dari X maka nilai Zx akan negatif, jika nilai X ada di atas
meannya maka nilai Zx akan positif. Begitu juga dengan Y. Seperti pada rumus
pertama, jika Zx dan Zy sepakat (keduanya positif atau negatif) maka nilai r
akan positif. Jika Zx dan Zy berlawanan (jika yang satu positif yang lain
negatif) maka nilai r akan negatif. Nah misalnya ada seratus subjek memiliki
nilai X dan Y. Lalu kita hitung satu-satu nilai Z dari X dan Y untuk tiap
subjek. Tentu saja ada beberapa yang sangat sepakat yang lain agak sepakat yang
beberapa berlawanan. Kemudian nilai-nilai Z ini dijumlahkan sehingga jika yang
sepakat lebih banyak akan menghasilkan angka positif. Kalo yang berlawanan
lebih banyak akan menghasilkan angka negatif. Kemudian hasil penjumlahan ini
dicari rata-ratanya. Jadi bisa dibilang nilai r itu akan menggambarkan
rata-rata keadaan X dan Y dari semua subjek dalam kelompok.
SUMBER :
http://fariidaelf.wordpress.com/materi-kuliah/regresi-
korelasi
Langganan:
Postingan (Atom)